If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2=5a
We move all terms to the left:
10a^2-(5a)=0
a = 10; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·10·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*10}=\frac{0}{20} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*10}=\frac{10}{20} =1/2 $
| 1/10(x+15)=-2(4-x) | | 9j+4-6+13j=2.5 | | 4.5=1.875y | | 4q+8+5q=-19 | | 8x+6x+6x=180 | | 6u-5u=15 | | 20x=80+10+5x | | -13=-3/4r | | 15x=7x+1+7x+6 | | 180-16x+3=3x-7 | | 9=v/3-11 | | 2x+9=12+3x | | 2(7x+1)-2(x+7)=-72 | | 5x-6=3x-6*2x | | (b+1)(4-b)=0 | | 2x9=12+3x | | 9-x/4=2 | | 2x9=122+3x | | q+5q=18 | | -3x+10=-100+7x | | 20j-16j=4 | | 18=2+2p | | x+6=42+5x | | 180-8x-9=5x-24 | | -9-2x=-4x+3 | | 4+4x=-7x-117 | | y-24(5)=7 | | 14x=7=35 | | 1/2a=-15 | | 6x-9=-14+7x | | 2x-9=-53+6x | | 3/5y^2+3/5y+4/5=0 |